1,068 research outputs found

    Structural stability, magnetic and electronic properties of Co2MnSi(001)/MgO heterostructures: A density functional theory study

    Full text link
    A computational study of the epitaxial Co2MnSi(001)/MgO(001) interface relevant to tunneling magnetoresistive (TMR) devices is presented. Employing ab initio atomistic thermodynamics, we show that the Co- or MnSi-planes of bulk-terminated Co2MnSi form stable interfaces, while pure Si or pure Mn termination requires non-equilibrium conditions. Except for the pure Mn interface, the half-metallic property of bulk Co2MnSi is disrupted by interface bands. Even so, at homogeneous Mn or Co interfaces these bands contribute little to the minority-spin conductance through an MgO barrier, and hence such terminations could perform strongly in TMR devices.Comment: 4 pages, 3 fig

    First-principles studies of kinetics in epitaxial growth of III-V semiconductors

    Full text link
    We demonstrate how first-principles calculations using density-functional theory (DFT) can be applied to gain insight into the molecular processes that rule the physics of materials processing. Specifically, we study the molecular beam epitaxy (MBE) of arsenic compound semiconductors. For homoepitaxy of GaAs on GaAs(001), a growth model is presented that builds on results of DFT calculations for molecular processes on the beta2-reconstructed GaAs(001) surface, including adsorption, desorption, surface diffusion and nucleation. Kinetic Monte Carlo simulations on the basis of the calculated energetics enable us to model MBE growth of GaAs from beams of Ga and As_2 in atomistic detail. The simulations show that island nucleation is controlled by the reaction of As_2 molecules with Ga adatoms on the surface. The analysis reveals that the scaling laws of standard nucleation theory for the island density as a function of growth temperature are not applicable to GaAs epitaxy. We also discuss heteroepitaxy of InAs on GaAs(001), and report first-principles DFT calculations for In diffusion on the strained GaAs substrate. In particular we address the effect of heteroepitaxial strain on the growth kinetics of coherently strained InAs islands. The strain field around an island is found to cause a slowing-down of material transport from the substrate towards the island and thus helps to achieve more homogeneous island sizes.Comment: 12 pages, 7 figures, REVTeX, Final version to appear in Appl. Phys. A (2002). Other related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Effect of the cluster size in modeling the H_2 desorption and dissociative adsorption on Si(001)

    Full text link
    Three different clusters, Si_9H_12, Si_15H_16, and Si_21H_20, are used in density-functional theory calculations in conjunction with ab initio pseudopotentials to study how the energetics of H_2 dissociativ e adsorption on and associative desorption from Si(001) depends on the cluster size. The results are compared to five-layer slab calculations using the same pseudopotentials and high qu ality plane-wave basis set. Several exchange-correlation functionals are employed. Our analysis suggests that the smaller clusters generally overestimate the activation barriers and reaction energy. The Si_21H_20 cluster, however, is found to predict reaction energetics, with E_{a}^{des}=56 +- 3 kcal/mol (2.4 +- 0.1 eV), reasonably close (though still different) to that obtained from the slab calculations. Differences in the calculated activation energies are discussed in relation to the efficiency of clusters to describe the properties of the clean Si(001)-2x1 surface.Comment: 10 pages, 6 figures, submitted to J. Chem. Phy

    Electron-hole spectra created by adsorption on metals from density-functional theory

    Full text link
    Non-adiabaticity in adsorption on metal surfaces gives rise to a number of measurable effects, such as chemicurrents and exo-electron emission. Here we present a quantitative theory of chemicurrents on the basis of ground-state density-functional theory (DFT) calculations of the effective electronic potential and the Kohn-Sham band structure. Excitation probabilities are calculated both for electron-hole pairs and for electrons and holes separately from first-order time-dependent perturbation theory. This is accomplished by evaluating the matrix elements (between Kohn-Sham states) of the rate of change of the effective electronic potential between subsequent (static) DFT calculations. Our approach is related to the theory of electronic friction, but allows for direct access to the excitation spectra. The method is applied to adsorption of atomic hydrogen isotopes on the Al(111) surface. The results are compatible with the available experimental data (for noble metal surfaces); in particular, the observed isotope effect in H versus D adsorption is described by the present theory. Moreover, the results are in qualitative agreement with computationally elaborate calculations of the full dynamics within time-dependent density-functional theory, with the notable exception of effects due to the spin dynamics. Being a perturbational approach, the method proposed here is simple enough to be applied to a wide class of adsorbates and surfaces, while at the same time allowing us to extract system-specific information.Comment: 23 pages, 9 figures, accepted for publication in Phys. Rev. B, http://prb.aps.org/, v2: some major improvements, plus correction of minor error

    Magnetic monolayer Li2_{2}N: Density Functional Theory Calculations

    Full text link
    Density functional theory (DFT) calculations are used to investigate the electronic and magnetic structures of a two-dimensional (2D) monolayer Li2_{2}N. It is shown that bulk Li3_{3}N is a non-magnetic semiconductor. The non-spinpolarized DFT calculations show that pp electrons of N in 2D Li2_{2}N form a narrow band at the Fermi energy EFE_{\rm{F}} due to a low coordination number, and the density of states at the Fermi energy (g(EFg(E_{\rm{F}})) is increased as compared with bulk Li3_{3}N. The large g(EFg(E_{\rm{F}}) shows instability towards magnetism in Stoner's mean field model. The spin-polarized calculations reveal that 2D Li2_{2}N is magnetic without intrinsic or impurity defects. The magnetic moment of 1.0\,μB\mu_{\rm{B}} in 2D Li2_{2}N is mainly contributed by the pzp_{z} electrons of N, and the band structure shows half-metallic behavior. {Dynamic instability in planar Li2_{2}N monolayer is observed, but a buckled Li2_{2}N monolayer is found to be dynamically stable.} The ferromagnetic (FM) and antiferromagnetic (AFM) coupling between the N atoms is also investigated to access the exchange field strength. {We found that planar (buckled) 2D Li2_{2}N is a ferromagnetic material with Curie temperature TcT_{c} of 161 (572) K.}Comment: Euro Phys. Lett. 2017 (Accepted

    Density-functional theory study of half-metallic heterostructures: interstitial Mn in Si

    Full text link
    Using density-functional theory within the generalized gradient approximation, we show that Si-based heterostructures with 1/4 layer δ\delta-doping of {\em interstitial} Mn (Mnint_{\mathrm int}) are half-metallic. For Mnint_{\mathrm int} concentrations of 1/2 or 1 layer, the states induced in the band gap of δ\delta-doped heterostructures still display high spin polarization, about 85% and 60%, respectively. The proposed heterostructures are more stable than previously assumed δ\delta-layers of {\em substitutional} Mn. Contrary to wide-spread belief, the present study demonstrates that {\em interstitial} Mn can be utilized to tune the magnetic properties of Si, and thus provides a new clue for Si-based spintronics materials.Comment: 5 pages, 4 figures, PRL accepte

    Atomic processes in molecular beam epitaxy on strained InAs(137): A density-functional theory study

    Get PDF
    The atomic processes in molecular beam epitaxy of InAs on the InAs(137) surface are investigated by means of first-principles total-energy calculations. We consider layer-by-layer growth on InAs(137) facets as a typical process during the evolution of shallow InAs islands in the Stranski-Krastanov growth mode of InAs on GaAs that is exploited for the self-assembly of heteroepitaxial quantum dots. From the calculated energetics we conclude that a growth scenario where an As2 molecule adsorbs on a single In adatom, followed by capture of another In adatom, is most likely. Moreover, our calculations of the potential-energy surface for In adatoms on the InAs(137) surface show that In adatoms are highly mobile. Surface diffusion on InAs(137) is found to be almost isotropic with energy barriers 2 molecule is destabilized by compressive strain in excess of −5%. This finding leads us to the conclusion that layer growth on InAs(137) facets ceases in highly strained regions of InAs islands on GaAs, in line with the observed shape evolution of such islands

    Three-dimensional visualization of relational databases

    Get PDF
    Published ArticleIn recent years, databases have reached unprecedented complexity and volume. A database structure comprising tens of thousands of tables with a staggering number of inter-table relationships to match can hardly be understood and managed by the human mind. This holds in particular, if two-dimensional visualizations of such a structure are used. This paper describes a project to enhance human comprehension by another dimension enabling database users to move among database tables in three dimensions. The project applies techniques of virtual reality enabling users to control the individual aspect and the level of detail while gaining valuable insights into the structure, the contents, and the retrieval strategies within their databases
    • …
    corecore